An Elementary Proof of the Convergence of Ricci Flow on Compact Surfaces

نویسنده

  • Shu-Yu Hsu
چکیده

We will give an elementary proof of a result of R. Hamilton for Ricci flow on compact surfaces. Let M be a compact surface. We will prove the global existence of solution of the Ricci flow ∂gij/∂t = (r − R)gij on M where R is the scalar curvature and r = R

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

GEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW

The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...

متن کامل

Kähler-ricci Flow on a Toric Manifold with Positive First Chern Class

In this note, we prove that on an n-dimensional compact toric manifold with positive first Chern class, the Kähler-Ricci flow with any initial (S)-invariant Kähler metric converges to a Kähler-Ricci soliton. In particular, we give another proof for the existence of Kähler-Ricci solitons on a compact toric manifold with positive first Chern class by using the Kähler-Ricci flow. 0. Introduction. ...

متن کامل

A Property of Kähler-Ricci Solitons on Complete Complex Surfaces

where Rαβ(x, t) denotes the Ricci curvature tensor of the metric gαβ(x, t). One of the main problems in differential geometry is to find canonical structure on manifolds. The Ricci flow introduced by Hamilton [8] is an useful tool to approach such problems. For examples, Hamilton [10] and Chow [7] used the convergence of the Ricci flow to characterize the complex structures on compact Riemann s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007